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Abstract

Open problems in controllability and stabilisability of analytic systems are discussed.
In particular, questions like, “Can controllability and/or stabilisability be tested by
solving algebraic equations?” and, “What is the relationship between controllability
from a state and stabilisability to the same state?” are discussed. A main idea is a
rethinking of how one might examine stabilisability by connecting it to controllability.

For analytic systems, local obstructions to controllability and stabilisability should
be determined by the germ of the system at the prescribed state. A means of charac-
terising these germs in a systematic manner is presented.

1. Introduction

In order to put the reader in the right frame of mind at the outset, I will quote Professor
Walter Noll:

The researcher’s focus is on the discovery of new results. He is the creator of
new knowledge. His nightmare is to get stuck in his search or to learn that
what he has found has already been discovered shortly before by somebody else.
Priority is very important to him and will sometimes induce him to rush into
print prematurely.

The professor’s focus, on the other hand, is on understanding, gaining insight
into, judging the significance of, and organizing old knowledge. He is disturbed
by the pile-up of undigested and ill-understood new results. He is not happy
until he has been able to fit these results into a larger context. He is happy if
he can find a new conceptual framework with which to unify and simplify the
results that have been found by the researcher.—Noll [2008]

I unapologetically declare that I am striving to write this paper in my capacity as a professor,
according to Noll’s dichotomy.

For the period of the past several years I have, with my dedicated and hard-working
graduate students César Aguilar and Pantelis Isaiah, been engaged in an attempt to under-
stand the local geometric structure of analytic control systems. My particular interest has
been to understand controllability (which I will here call “reachability”) and stabilisability
(which I will annoyingly here essentially refer to as “controllability”1). Of course, these are
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2 A. D. Lewis

venerable topics about which much has been written. Let me clearly state that I am not
claiming to present “solutions” to these problems in this paper. My aim is to formulate
some overarching questions related to these concepts, and to describe what properties a
solution might have. I will also describe a device that I will argue captures exactly the sort
of information one needs to address the local reachability and controllability problems in
which I am interested.

2. A truncated critical literature review

A very good way to describe what I have been trying to do with my students is to
discuss what is known about reachability and controllability (remember, I am using these
terms instead of “controllability” and “stabilisability”). My objective in this literature
review is not to be comprehensive and present all important contributions. Rather, I will
focus on describing those parts of the research literature whose description will contribute
to the objective of the paper. I hope this will not cause offence to anyone who has made
substantial contributions to these areas and whose work is not mentioned.

In this section we shall assume the reader is familiar enough with the subject of the
paper that we can use notions that we have not yet precisely defined. Precise definitions
for the concepts needed in the paper are provided in Section 3.

2.1. A review of reachability. The subject of reachability (again, this refers to what is
commonly called “controllability”) is a classical one in geometric control theory. Indeed,
it is probably fair to say that the career of any researcher in geometric control theory has
touched upon the subject of reachability in a substantial way at some point. As is well-
known, the subject of reachability of a control system from a state x0 starts with the notion
of accessibility, by which it is meant that the set of states reachable from x0 has a nonempty
interior. Accessibility is well understood, and it can be precisely tested for analytic systems
using the so-called “Lie algebra rank condition” [e.g., Krener 1974, Sussmann and Jurdjevic
1972]. Other forms of reachability require that x0 be itself contained in the interior of the
set of reachable states. In terms of design of controllers, this is a desirable property, as it
means that by control you can go “in all directions” from x0. The testing for these other
forms of reachability appears to be extremely challenging. First of all, as is borne out by
the results of Kawski [1990], Sontag [1988], one should give up on an easily computable
test for these forms of reachability; precisely, reachability is an NP-hard decision problem.
However, “not easily computable” should not be confused with “uninsightful,” as we hope
the following example illustrates.

2.1 Example: On Rm × Rn−m with states denoted by (x1,x2) and control denoted by
u ∈ Rm, we consider the system

ẋ1(t) = u(t),

ẋ2(t) = F (x1(t)),

where F : Rm → Rn−m is a homogeneous polynomial function of degree at least 2. One can
easily check that this system is locally reachable from (0,0) if and only if conv(image(F )) =
Rn−m, cf. [Aguilar and Lewis 2012, Example 5.3]. This is a satisfying geometric condition
for reachability; if one had to “guess” when this system is reachable, this would be the
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conclusion one would reach. However, if F has degree 4 or more, then the verifiability of
this condition is known to be NP-hard [Ramana 1993]. •

The point is that we should not give up on the reachability problem, even if we know that
any “solution” to the problem will be intractable. However, the NP-hard characterisations
of reachability do give one cause to wonder just what is meant by a solution to the problem.
A few components of this sort of question are pointed out by Agrachev [1999]. The most
germane to us of Agrachev’s questions is whether, given a reachable system, is it true that
there is some finite-order of differentiation so that, any system whose derivatives up to
that order agree with the reachable system, must itself be reachable. Slightly less precisely,
is it possible to recognise reachable systems using only finite differentiations? This sort
of question is fleshed out in the paper of Kawski [2006], who gives some very interesting
examples that show just how delicate the nature of reachability can be.

In most any general treatment of reachability, a key rôle is played by the notions of
“variation” and “obstruction.”

A variation is to be thought of as a tangent vector representing a direction tangent to
the reachable set. The exact way in which one determines a variation is crucial, and various
schemes exist for describing these [e.g., Bianchini and Stefani 1993, Kawski 1988, 1989]. In
[Aguilar 2010, Aguilar and Lewis 2008] is presented a methodology for generating control
variations that has some interesting algebraic structure associated with it. We review the
principal ingredient in this construction in Section 5.2.

Also important in any study of reachability are obstructions. Typically, these are vari-
ations that are intrinsically “unidirectional.” It is difficult to make this notion precise in
any sort of general way, so let us rather illustrate the idea with an example.

2.2 Example: We consider the system on R3 with states denoted by (x1, x2, x3) and controls
denoted by (u1, u2):

ẋ1(t) = u1(t),

ẋ2(t) = u2(t),

ẋ3(t) = x1(t)2 + αx2(t)2.

This is a special case of the class of systems from Example 2.1. From that example we
know that the system is reachable from (0, 0, 0) if and only if α < 0. For α ≥ 0, the system
is not reachable from (0, 0, 0) because of “obstructions” possessed by the system. In the
development of the theory, these obstructions manifest themselves via certain Lie brackets
of the drift vector field f0 = (x2

1 +αx2
2) ∂
∂x3

and the control vector fields fa = ∂
∂xa

, a ∈ {1, 2}.
The offending Lie brackets in this example are

[f1, [f0, f1]] = 2
∂

∂x3
, [f2, [f0, f1]] = 2α

∂

∂x3
.

Loosely speaking, the reason that these brackets are obstructions is that the control vector
fields, which are those whose sign can be controlled, appear an even number of times, and
so their direction cannot be changed by changing the sign of the control. However, if α < 0
then one can “neutralise” these two obstructions as they have the opposite sign. •

This example is generalised in [Basto-Gonçalves 1998]. Also, this sort of structure plays
a key rôle in the design of motion control algorithms for a class of mechanical systems [Bullo
and Lewis 2005].
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Having painted a (hopelessly) general picture of how reachability has been studied in
the literature, one could now ask, “What is known?” We will not try to address this here.
The fact is that what is known is not in a very good state. One has a morass of separately
sufficient and necessary conditions which overlap awkwardly and which all depend on the
particular approach of the authors. Suffice it to say that Lie brackets of vector fields feature
prominently in almost any geometric treatment of reachability theory.

We shall, however, point out three phenomena that are not consistently well handled
by existing approaches to reachability.

1. The effects of feedback transformations: One might like to think that reachability should
be feedback invariant. This is true, provided one is sufficiently careful to understand
what one is saying. However, even the simplest test for local reachability, the test of
reachability of the linearisation, is not robust under feedback transformation. Indeed,
consider the two feedback equivalent systems

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + x3(t)u1(t),

ẋ3(t) = u2(t).

The system on the left does not have a reachable linearisation, while the system on the
right has a reachable linearisation. Many of the sophisticated tests for reachability in
the literature share this lack of invariance under feedback transformations.

2. Invariance under changes of coordinate: In some sense, most of the Lie algebraic ap-
proaches are coordinate-invariant in that the Lie bracket is coordinate-invariant. How-
ever, other tools (nilpotent and homogeneous approximation spring to mind) are de-
cidedly not coordinate-invariant. Also, most of the examples studied as counterexam-
ples are polynomial systems, and this is a class of systems that is also decidedly not
coordinate-invariant. This makes it difficult to understand what these counterexam-
ples are counterexamples for. Often, they are coordinate-dependent counterexamples to
coordinate-dependent or feedback-dependent statements. For this reason, these exam-
ples may not always be as useful as they seem. Or they may be; the point is that one
cannot really say for sure.

3. The effects of changing the size of the control set: Consider the system

ẋ1(t) = u1(t),

ẋ2(t) = u2(t),

ẋ3(t) = x1(t)2(1 + 1
2u2(t)).

Suppose that the controls take values in [−α, α]2. It is shown by Aguilar [2010, Exam-
ple 5.8] that this system is reachable from (0, 0, 0) if α > 2 and is not reachable from
(0, 0, 0) if α < 2. This fact will necessarily be lost in any reachability test involving
brackets of the drift and control vector fields.

In all three cases, the problem with standard approaches using Lie brackets is that the usual
tests involve brackets of the drift and control vector fields, and specific choices of these can
affect both the actual reachability of the system and/or its satisfying any given test for
reachability. It is clear that a good theory needs to account for this.
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2.2. A review of controllability, née stabilisability. Remember that “controllability” here
refers to what is commonly called “stabilisability,” i.e., controlling states to a point. To
be more clear, perhaps the most relevant concept that we are thinking about is what is
commonly called “asymptotic controllability.” In any case, the precise definitions shall be
given in Section 3.

Issues of language aside, for some time now it has been known that controllabil-
ity, i.e., that which is typically known as “asymptotic controllability,” is equivalent to the
existence of a stabilising feedback [Ancona and Bressan 1999, Clarke, Ledyaev, Sontag, and
Subotin 1997]. That is to say, in the terminology we are using and with appropriate as-
sumptions, controllability and stabilisability are equivalent. Therefore, the question of the
existence of a stabilising feedback for a state x0 is reduced to the problem of determining
whether all states can be controlled open-loop to x0, possibly in infinite time. The problem
of whether or not a system is asymptotically controllable has not been well studied. Instead
the focus of this branch of research has been on the existence and properties of the stabil-
ising feedback laws. This is neither surprising nor inappropriate. After all, if one knows
that a system can be stabilised by feedback, the obvious question is how this can be done
and done well, particularly in view of the importance in applications of finding stabilising
controllers.

However, the development of the theory along these lines, with the attendant focus
on Lyapunov theory, has led to a substantial gulf between the study of reachability and
stabilisability, the former being decidedly geometric and the latter being decidedly not.
This seems like something that ought to be rectified. After all, the transference of the
decidability of whether a system is controllable to a state x0 to the existence of a control
Lyapunov function is not significant gain: both are difficult problems, perhaps equally so.
Moreover, some things are decidedly lost in the coarseness of the Lyapunov approach. A
few examples of these are as follows.

1. The effects of system structure on controllability: Even in our brief review of reachability
in the preceding section, we saw that there were many opportunities for the structure of
the system to manifest itself in the study of its reachability. The in toto imposition of a
Lyapunov function on a system hurdles over all structural properties of the system. This
is reflected by the fact that in the literature on reachability one sees many pathological
deviously constructed examples that serve to illustrate the complex nature of reachabil-
ity. Such examples are not in abundance in the literature on stabilisation. Indeed, the
literature on stabilisation is more dedicated to classes of systems that are stabilisable.
This marked distinction between the two bodies of research is peculiar, given that the
subjects are so closely linked, as we shall emphasise in Section 4.2. A good characteri-
sation of the available techniques for determining the existence of Lyapunov functions
is provided by Sontag.

The search for such functions is more of an art than a science, and good
physical insight into a given system plus a good amount of trial and error is
typically the only way to proceed.—Sontag [1998]

2. Regularity of stabilising feedback: A problem of some importance in the study of stabil-
ising feedbacks is that of the regularity of the feedback. In particular, we refer to [Art-
stein 1983] for the existence of feedbacks that are smooth on a punctured neighbourhood
of the equilibrium (see also the important constructive result of Sontag [1989]) and to
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[Brockett 1983, Coron 1990, Orsi, Praly, and Mareels 2003, Zabczyk 1989] for topological
obstructions to the existence of continuous stabilisers. The Lyapunov characterisation
for smooth stabilisation suffers from the same existential problems as described above.
On the other hand, the topological characterisations for the existence of continuous
stabilisers are testable but extremely coarse.

Given the preceding observations, our approach to the problem of stabilisability is to
instead study controllability, as this can be related to reachability. However, in order to do
this, we need to begin to be more precise.

3. Definitions

In this section we present the definitions we shall use in this paper regarding systems,
reachability, and controllability.

3.1. System definitions. There are many possible system definitions, and the kind of
results one can prove varies with the definition one uses. But a choice has to be made, and
here is ours.

3.1 Definition: A control system is a triple Σ = (M,C, F ) where

(i) M is a paracompact Hausdorff real analytic manifold,

(ii) C is a metric space, and

(iii) F : M× C→ TM satisfies

(a) F (x, u) ∈ TxM,

(b) for each u ∈ C, Fu is a real analytic vector field, where Fu(x) = F (x, u), and

(c) F T is continuous, where F T : TM × C → TTM is defined by asking that
F T (vx, u) = F Tu , where ·T denotes the tangent lift.

If S ⊆ M is a submanifold such that Fu(x) ∈ TxS for each (x, u) ∈ S × C, then by Σ|S we
denote the control system Σ|S = (S,C, F |S× C). •

Let us also define and provide notation for control and trajectories.

3.2 Definition: (i) A control for a control system Σ = (M,C, F ) is a measurable locally
essentially bounded map µ : T → C where T ⊆ R is an interval. We denote by
L∞loc(T;C) the controls defined on T.

(ii) A controlled trajectory for Σ is a pair (ξ, µ) where µ ∈ L∞loc(T;C) and ξ : T→ M is
a locally absolutely continuous curve satisfying

ξ′(t) = F (ξ(t), µ(t)). (3.1)

For x0 ∈ M, µ ∈ L∞loc(T;C), and t0, t ∈ T, let ΦF (x0, µ, t0, t) ∈ M be the evaluation at
t of the solution to (3.1) with initial condition ξ(t0) = x0.

(iii) Let x0 ∈ M, let T′ ⊆ T, and let t0 ∈ T′. A control µ ∈ L∞loc(T′,C) is admissible for
(t0, x0) on T′ if there exists a solution to the initial value problem

ξ′(t) = F (ξ(t), µ(t)), ξ(t0) = x0, (3.2)

defined for every t ∈ T′. Let us denote by Adm∞Σ (x0, t0,T′) the set of admissible
controls for (t0, x0) on T′. •
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We shall make use of the time-reverse system associated to a control system.

3.3 Definition: If Σ = (M,C, F ) is a control system, the time-reversed system is Σ− =
(M,C,−F ), where (−F )(x, u) = −(F (x, u)). •

The following simple lemma is one we shall reference a few times.

3.4 Lemma: Let Σ = (M,C, F ) be a control system and let x0, x1 ∈ M. If µ ∈
L∞loc([t0, t1];C) and if µ− ∈ L∞loc([t0, t1];C) is defined by

µ−(t) = µ((t0 + t1)− t),

then x1 = ΦF (x0, µ, t0, t1) if and only if x0 = Φ−F (x1, µ−, t0, t1).

Proof: Let ξ(t) = ΦF (x0, µ, t0, t) and take

ξ−(t) = ξ((t0 + t1)− t).

We then calculate

ξ′−(t) = −ξ′((t0 + t1)− t) = −F (ξ((t0 + t1)− t), µ((t0 + t1)− t)) = −F (ξ−(t), µ−(t)).

Now we note that ξ−(t0) = ξ(t1) so that ξ−(t) = Φ−F (x1, µ−, t0, t). Taking t = t1 gives
x0 = Φ−F (x1, µ−, t0, t1). That the equality x0 = Φ−F (x1, µ−, t0, t1) follows from x1 =
ΦF (x0, µ, t0, t1) is obtained by replacing F with −F in the preceding argument. �

3.2. Reachability definitions. Let us first define reachable sets.

3.5 Definition: Let Σ = (M,C, F ) be a control system.

(i) Let t ∈ R≥0. The reachable set from x0 in time t is

RΣ(x0, t) = {ΦF (x0, µ, 0, t) | µ ∈ Adm∞Σ (x0, 0, t,T′), [0, t] ⊆ T′}.

(ii) Let t ∈ R≥0. The reachable set from x0 in time at most t is

RΣ(x0,≤ t) =
⋃

τ∈[0,t]

RΣ(x0, τ).

(iii) The reachable set from x0 is

RΣ(x0) =
⋃

t∈R≥0

RΣ(x0, t). •

With these definitions, one can easily say what is meant by reachability in its various
forms.

3.6 Definition: Let Σ = (M,C, F ) be a control system and let x0 ∈ M.

(i) The system Σ is accessible from x0 if int(RΣ(x0)) 6= ∅.
(ii) The system Σ is small-time accessible from x0 if there exists T ∈ R>0 such that

int(RΣ(x0,≤ t)) 6= ∅ for every t ∈ ]0, T ].
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(iii) The system Σ is small-time locally accessible from x0 if Σ|U is small-time acces-
sible from x0 for every neighbourhood U of x0.

(iv) The system Σ is reachable from x0 if x0 ∈ int(RΣ(x0)).

(v) The system Σ is small-time reachable from x0 if there exists T ∈ R>0 such that
x0 ∈ int(RΣ(x0,≤ t)) for every t ∈ ]0, T ].

(vi) The system Σ is small-time locally reachable from x0 if Σ|U is small-time reachable
from x0 for every neighbourhood U of x0.

(vii) The system Σ is totally reachable if RΣ(x) = M for every x ∈ M.

(viii) A state x ∈ M is asymptotically reachable from x0 if there exists µ ∈ L∞loc(R≥0;C)
such that x = limt→∞ΦF (x0, µ, 0, t). •

The terminology we use is not standard, although the concepts represented are.
The standard theory of accessibility for analytic systems [Sussmann and Jurdjevic 1972]

implies that “accessible,” “small-time accessible,” and “small-time locally accessible” are all
equivalent concepts, but we make the unnecessary trichotomy for the sake of completeness
and consistency. The main result of the theory developed by Sussmann and Jurdjevic is
that the three notions of accessibility are themselves equivalent to the Lie algebra rank
condition which we now recall for the sake of completeness and later reference. As above,
for u ∈ C we denote by Fu the real analytic vector field Fu(x) = F (x, u). By FΣ let us
denote the family of vector fields (Fu)u∈C and by L (∞)(FΣ) denote the Lie algebra of vector
fields generated by FΣ. We then define a distribution L(∞)(FΣ) by

L(∞)(FΣ)x = spanR(X(x)| X ∈ L (∞)(FΣ)).

One then has that Σ is accessible from x0 if and only if L(∞)(FΣ)x0 = Tx0M.
We shall also make use of the notion of the orbit of the family of vector fields FΣ.

3.7 Definition: Let Σ = (M,C, F ) be a control system with FΣ = (Fu)u∈C the family of
vector fields defined above. The orbit of Σ through x0 ∈ M is

Orb(x0; FΣ) = {ΦFu1
t1
◦ . . . ◦Φ

Fuk
tk

(x0) | u1, . . . , uk ∈ C, t1, . . . , tk ∈ R, k ∈ Z≥0},

assuming all vector fields are complete. •
A theorem of Nagano [1966] shows that, since the vector fields are real analytic,

Orb(x0; FΣ) is an immersed submanifold and that TxOrb(x0; FΣ) = L(∞)(FΣ)x.

3.3. Controllability definitions. Let us first define controllable sets.

3.8 Definition: Let Σ = (M,C, F ) be a control system.

(i) Let t ∈ R≥0. The controllable set to x0 in time t is

CΣ(x0, t) = {x ∈ M | x0 = ΦF (x, µ, 0, t), µ ∈ Adm∞Σ (x, 0, t,T′), [0, t] ⊆ T′}.

(ii) Let t ∈ R≥0. The controllable set to x0 in time at most t is

CΣ(x0,≤ t) =
⋃

τ∈[0,t]

CΣ(x0, τ).
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(iii) The controllable set to x0 is

CΣ(x0) =
⋃

t∈R≥0

CΣ(x0, t). •

We can now give our definitions for controllability.

3.9 Definition: Let Σ = (M,C, F ) be a control system and let x0 ∈ M.

(i) The system Σ is approachable to x0 if int(CΣ(x0)) 6= ∅.
(ii) The system Σ is small-time approachable to x0 if there exists T ∈ R>0 such that

int(CΣ(x0,≤ t)) 6= ∅ for every t ∈ ]0, T ].

(iii) The system Σ is small-time locally approachable to x0 if Σ|U is small-time ap-
proachable to x0 for every neighbourhood U of x0.

(iv) The system Σ is controllable to x0 if x0 ∈ int(CΣ(x0)).

(v) The system Σ is small-time controllable to x0 if there exists T ∈ R>0 such that
x0 ∈ int(CΣ(x0,≤ t)) for every t ∈ ]0, T ].

(vi) The system Σ is small-time locally controllable to x0 if Σ|U is small-time control-
lable to x0 for every neighbourhood U of x0.

(vii) A state x ∈ M is asymptotically controllable to x0 if there exists µ ∈ L∞loc(R≥0;C)
such that x0 = limt→∞ΦF (x, µ, t0, t). •

The definitions here perfectly mirror those for reachability. One distinction that does
arise for controllability is the importance of asymptotic controllability, as it is this notion
that relates to stabilisability. Thus we flesh this out with the following definitions.

3.10 Definition: Let Σ = (M,C, F ) be a control system and let x0 ∈ M.

(i) The system Σ is asymptotically controllable to x0 if x is asymptotically controllable
to x0 for every x ∈ M.

(ii) The system Σ is locally asymptotically controllable to x0 if, for every neighbour-
hood U of x0 there exists a neighbourhood V ⊆ U of x0 such that Σ|V is asymptotically
controllable to x0. •

The notions of asymptotic controllability used by Ancona and Bressan [1999], Clarke,
Ledyaev, Sontag, and Subotin [1997] to prove its equivalence to the existence of a stabilis-
ing feedback include some additional conditions, mainly the condition that the open-loop
controls that control states to x0 have some Lyapunov-type stability conditions, i.e., the
system with the open-loop controls should stabilise x0 in the Lyapunov sense. We do not
include such conditions here since we do not really know at this point what conditions will
most naturally arise from our approach,

4. Some problems and lines for future research

In this section, with the definitions from the preceding section as backdrop, I state a
few simple problems that immediately arise. Then I formulate a few less crisp problems
that I believe will be fruitful for future research.
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4.1. Trivial consequences of the definitions. For the sake of bookkeeping, let us record
some elementary results.

4.1 Lemma: If Σ = (M,C, F ) is a control system, if x0, x1 ∈ M, and if T ∈ R>0, then the
following statements hold:

(i) RΣ(x0, T ) = CΣ−(x0, T );

(ii) RΣ(x0,≤ T ) = CΣ−(x0,≤ T );

(iii) RΣ(x0) = CΣ−(x0).

Proof: These statements all follow from Lemma 3.4. �

A consequence of these elementary observations is the following.

4.2 Lemma: If Σ = (M;C;F ) is a control system and if x0 ∈ M, then Σ is accessible from
x0 if and only if it is approachable to x0.

Proof: This follows from Lemma 4.1, the fact that accessibility from x0 is equivalent to the
Lie algebra rank condition holding at x0, and the fact that the Lie algebra rank condition
holds at x0 for Σ if and only if it holds at x0 for Σ−. �

4.2. Problems arising from the definitions. Since this is supposed to be a paper about
some problems in geometric control theory, let us precisely state some more elementary
of these problems. In each case, we first give a vague version of the question, and then
a more clear statement after some discussion. In all cases we consider a control system
Σ = (M,C, F ).

4.3 Problem: (Can asymptotic reachability occur?) The question here is whether
states exist that are asymptotically reachable from a given state. Without some conditions,
the answer is obviously, “Yes, it is possible.” For example, for the system

ẋ1(t) = u(t),

ẋ2(t) = − x1(t),
(4.1)

the state (0, 0) is asymptotically reachable from (0, 1). The real problem here is the follow-
ing.

Given x0 ∈ M and x1 ∈ Orb(x0,FΣ), is it possible that x1 is only asymptotically
reachable from x0? •

4.4 Problem: (Does reachability imply controllability?) If Σ is reachable (in some
sense) from x0, does this imply that Σ is also controllable to x0 (in some similar sense)?
One variation of this question is answered in the early paper of Sussmann [1979]. Here
it is shown that if Σ is totally reachable then it is controllable to every point. Actually
(since the previous sentence is obviously true), what is shown is that there exists a piecewise
analytic feedback for the system that stabilises a given point in finite-time. However, we
are interested in a local version of this result.

If Σ is small-time locally reachable from x0, does it follow that Σ is small-time
locally controllable to x0?
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This question was actually answered in the affirmative by my student Pantelis Isaiah [2011].
Furthermore, he shows, following Sussmann, that if Σ2 is small-time locally controllable
from x0, then, for any T ∈ R>0, there exists a piecewise analytic feedback on RΣ(x0, < T )
that asymptotically stabilises (in the sense of Lyapunov) x0. A key ingredient in this
construction is the observation by Grasse [1992, Proposition 5.2] that, for analytic systems,
small-time local reachability of Σ from x0 is equivalent to small-time local reachability of
Σ− from x0. •
4.5 Problem: (Does controllability imply reachability?) The real question of interest
here is, “Does stabilisability imply reachability,” keeping in mind that our notion of control-
lability is intended to stand-in for stabilisability. But for this variation to make sense, one
must keep in mind that stabilisability is connected to asymptotic controllability [Ancona
and Bressan 1999, Clarke, Ledyaev, Sontag, and Subotin 1997]. In this formulation, it is
certainly not the case that asymptotic controllability implies reachability of any kind; the
example (4.1) suffices to demonstrate this. Therefore, the pertinent formulation here is the
following.

If Σ|Orb(x0,FΣ) is locally asymptotically controllable to x0, does it follow that
Σ is small-time locally reachable from x0?

Note that on orbits the notion of asymptotic controllability to x0 reduces to that of control-
lability to x0 provided that we have an affirmative answer to Problem 4.3. In such event,
we get an affirmative answer to the problem here by virtue of Lemma 3.4 and the result of
Grasse [1992] on equivalence of small-time local reachability of Σ and Σ−. •
4.6 Remark: In all three questions posed above, the reader will observe that the orbit plays
a rôle. This is, in my opinion, not too surprising since the restriction to an orbit is a nat-
ural thing to do using the principle that “control theory take place on orbits of a system.”
However, there are many places where this principle does not apply, and interesting ques-
tions arise from considering the stabilisation of a system from states that are not in the
orbit of the state to be stabilised. A perfect illustration of this is provided by bilinear
systems, i.e., systems of the form

ẋ(t) =
(
A+

m∑
j=1

uj(t)Bj

)
x(t),

for x ∈ Rn, u ∈ Rm, and A,B1, . . . ,Bn ∈ Rn×n. While it is true that these systems arise
in a natural way [see Elliott 2009], the fact is that, for a bilinear system, Orb(0,FΣ) = {0}.
Therefore, reachability from and controllability to 0 for bilinear systems is “singular” in
some sense. A little more precisely, notice that, if we regard bilinear systems as control-
affine systems, 0 is a singular point for the distribution generated by the control vector
fields. Indeed, it is a particularly bad singular point because all control vector fields vanish
at 0!

Thus we see that, while the restriction to Orb(x0,FΣ) is quite natural from a control
theoretic point of view, there are some important omissions made by this restriction. And
we have no suggestions on how to handle this here, except to say that algebraic geometry
will be involved. •

2It is required that the control set C be compact and that, for each T ∈ R>0, there is a compact set
containing all trajectories defined on [0, T ]
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4.3. General lines of research and larger problems. The more or less elementary problems
of the preceding section suggest that the subjects of reachability and stabilisability should
not form disjoint areas of activity. However, as I attempted to emphasise in Section 2, in
the present literature there is almost no “crosstalk” between the reachability and the stabil-
isation communities. This is regrettable, and here I formulate a few problems that I hope
can serve to build a bridge between these bodies of work and the researchers contributing
to them.

4.7 Problem: (Are Lie algebra constructions related to Lyapunov functions?)
Existing tools for testing reachability are often based on the structure of the Lie algebra
L (∞)(FΣ). It seems natural that, given the connections between reachability and con-
trollability seen in the preceding section, the Lie algebra structure should be reflected in
any Lyapunov function possessed by the system, especially in a neighbourhood of the state
x0 being stabilised. A specific sort of problem that comes to mind from thinking along
these lines pertains to the regularity of Lyapunov functions. The general constructions for
Lyapunov functions for asymptotically controllable systems yield Lyapunov functions that
are a priori highly irregular [Sontag and Sussmann 1995]. In practice, however, Lyapunov
functions, even when nonsmooth, are not that nonsmooth. One imagines that for analytic
systems such as we are considering here, the resulting Lyapunov functions are somehow
nicer than the merely nonsmooth Lyapunov functions of Sontag and Sussmann.

A preliminary result in this direction has been given by Isaiah [2012], who shows that for
locally controllable systems there is a technique for constructing a Lyapunov-like function
that has some analyticity properties. •

4.8 Problem: (Do Lie algebra constructions shed light on the regularity of sta-
bilising feedbacks?) The problem here is obviously related to the considerations put
forward in Problem 4.7. Obstructions to the existence of smooth or continuous stabilis-
ing feedbacks have normally come from linearisation [Brockett 1983] or have a topological
character [Brockett 1983, Coron 1990, Orsi, Praly, and Mareels 2003, Zabczyk 1989]. These
linearisation and/or topological characterisations are well-known to be far from sharp. One
can easily imagine, I think, that the structure of the Lie algebra L (∞)(FΣ) should be con-
nected to the smoothness of stabilising feedback. As far as I am aware, there are no results
along these lines whatsoever in the literature. •

4.9 Problem: (Can Lyapunov approaches to stabilisation be used for motion
planning?) The strength of the Lyapunov-based theory of stabilisation is that, pro-
vided one knows a Lyapunov function, the design of a stabilising feedback is greatly facili-
tated [e.g., Sontag 1989]. For reachability, the attendant design problem is motion planning.
It stands to reason that a Lyapunov function controlling to a point should shed light on
controllers that reach from a point. This is another completely unexplored idea, as far as I
can see. Ideas from the theory of finite-time stability and stabilisation are probably useful
here [Dorato 2006, Moulay and Perruquetti 2005]. •

5. An approach to understanding the local structure of control systems

Now that we have described some of the problems we will address, let us say something
about how one might attack these problems. The problem, clearly, is to appropriately
describe the control theoretic properties of a system in a neighbourhood of some state x0.
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Just what are “control theoretic properties,” and how might one describe these? I will
argue that studying piecewise constant controls captures enough of the information about
the system. There is no theorem here to precisely capture what I want to say (although
proving such a theorem would be a biproduct of this line of research), but instead I will
point out two facts.

1. To study the reachability of analytic systems such as we are considering, it is sufficient
to consider piecewise constant controls. This is pointed out by Grasse [1992].

2. The “sample and hold” control strategy of [Clarke, Ledyaev, Sontag, and Subotin 1997]
for constructing stabilising feedbacks makes obvious use of piecewise constant controls.

Together, we hope that this provides enough evidence (although there is more) that studying
the action of piecewise constant controls is sufficient to characterise the “control theoretic
properties” of a system. We also mention that, based on our observations at the end of
Section 2.1, one wants a theory that is (1) feedback-invariant, (2) coordinate-invariant,
and (3) able to properly account for the character of the control set. In this section we
present a construction that satisfies all of the above constraints.

The constructions in this section originate in the PhD thesis of my graduate student
César Aguilar [2010]. These have been reported upon elsewhere [Aguilar and Lewis 2008,
2012], so we will be a little sketchy here. In particular, we shall assume the reader can parse
the algebra and jet bundle notation we are about to introduce, and which is explained in
the above references.

1. Sk(V): the symmetric tensors of degree k on a R-vector space V

2. S≤k(V): ⊕kj=1Sj(V)

3. L(U;V): the set of linear maps between R-vector spaces U and V

4. Hom(A;B): the set of algebra homomorphisms of R-algebras A and B

5. Jkπ: the kth jet bundle of a vector bundle π : E→ M

6. T∗kx M: the R-algebra of k-jets of functions at x taking the value 0 at x

7. Jk(x,y)(M;N): the kth-order jets of mappings from x ∈ M to y ∈ N, thought of as a

homomorphism of the R-algebras JkyN and T∗kx M

8. jkΦ(x): the k jet at x of a mapping Φ ∈ C∞(M;N)

5.1. Multitrajectories and variations. Our basic construction for investigating controlla-
bility is the following. By Φξ

t we denote the flow of a vector field ξ. Thus t 7→ Φξ
t (x0)

is the integral curve of ξ through x0. By πTM : TM → M we denote the tangent bundle
projection.

5.1 Definition: Let M be a manifold, let x0 ∈ M, and let ξ = (ξ1, . . . , ξp) ⊆ Γ∞(πTM) be a
family of smooth vector fields such that ξj is complete for every j ∈ {1, . . . , p}.

(i) The C∞-map

Φξ
x0 : Rp → M

(t1, . . . , tp) 7→ Φξ1
t1
◦ . . . ◦Φ

ξp
tp (x0)
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is the ξ-multitrajectory .

(ii) A positive p-end-time variation is a C∞-map τ : R≥0 → Rp≥0 with the property

that τ (0) = 0p. The set of positive p-end-time variations is denoted by ET+
p .

(iii) Let τ be a positive p-end-time variation. The order of the pair (ξ, τ ) at x0, denoted
ordx0(ξ, τ ), is the smallest positive integer k such that

jk(Φξ
x0
◦τ )(0) 6= 0x0

(derivatives are assumed to be taken from the right). If no such k exists then the
order is taken to be ∞.

(iv) Let τ be a positive p-end-time variation such that (ξ, τ ) has finite order k =

ordx0(ξ, τ ). The (ξ, τ )-variation at x0 is the curve νξ,τ (x0) : s 7→ Φξ
x0 ◦τ (s) and

the (ξ, τ )-infinitesimal variation is the tangent vector Vξ,τ (x0) ∈ Tx0M defined
by

Vξ,τ (x0) = jkνξ,τ (x0)(0) ∈ Sk(R∗)⊗ Tx0M ' Tx0M

(derivatives are assumed to be taken from the right). •
The idea of these constructions is that they provide a way of studying variations obtained

using piecewise constant trajectories. These constructions can be related to the usual Lie
algebraic characterisations of variations, and this is done by Aguilar [2010].

5.2. A system-independent algebraic construction. In this section, motivated by our
constructions above, we make two purely algebraic constructions involving jet bundles, and
which do not depend on the system.

The first observation we make is that for k ∈ Z>0 we have

jk(Φξ
x0
◦τ )(0) = jkτ (0) ◦ jkΦξ

x0(0p),

where we think of

jkτ (0) ∈ Hom((Rp)∗k; (R)∗k),

jkΦξ
x0(0p) ∈ Hom(T∗kx0M; (Rp)∗k)

as homomorphisms of R-algebras, and where we use the abbreviation (Rp)∗k =

Jk(0p,0)(R
p;R). This shows that it is important to know the character of jkΦξ

x0(0p). In-

deed, this object, when restricted to the case when the vector fields ξ are from FΣ, encodes
fundamental information concerning the structure of the system Σ.

Let us denote by TMp the p-fold Whitney sum of TM with itself, and denote by
πpTM : TMp → M the canonical projection. For a family ξ = (ξ1, . . . , ξp) of C∞-vector
fields on M, let us denote by ξ the corresponding section of TMp, accepting a convenient
abuse of notation. We define a map

∆k : V→ S≤k(V)

v 7→ v ⊕ (v ⊗ v)⊕ · · · ⊕ (v ⊗ · · · ⊗ v).

For R-algebras A and B we recall that Hom(A;B) ⊆ L(A;B)—i.e., homomorphisms of alge-
bras are linear maps—but Hom(A;B) is not a subspace in general.

We now have the following theorem, the most complete proof of which can be found in
the thesis of Aguilar [2010].
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5.2 Theorem: For each k, p ∈ Z>0 there exists a unique map

T k
p (x0) ∈ L(S≤k(Jk−1

x0 πpTM); L(T∗kx0M; (Rp)∗k))

such that
T k
p (x0)(∆k(j

k−1ξ(x0))) = jkΦξ
x0(0p)

for every family ξ = (ξ1, . . . , ξp) of C∞-vector fields. Moreover, the diagram

∆1(J0
x0π

p
TM)

T 1
p (x0)

��

∆2(J1
x0π

p
TM)oo

T 2
p (x0)

��

∆3(J2
x0π

p
TM)oo

T 3
p (x0)

��

· · ·oo

Hom(T∗1x0M; (Rp)∗1) Hom(T∗2x0M; (Rp)∗2)oo Hom(T∗3x0M; (Rp)∗3)oo · · ·oo

commutes, where the horizontal arrows are the canonical projections.

The diagram from the Theorem 5.2 allows us to take the limit as k → ∞ in a natural
(i.e., projective) way, and so one can intrinsically capture the switching behaviour of any p
vector fields up to infinite order in a single algebraic object.

In [Aguilar 2010, Aguilar and Lewis 2008] a procedure is given to construct variations
using the formalism above. In [Aguilar and Lewis 2012] these variations are shown to be
sufficient to determine the reachability of a class of homogeneous control systems, and also
to produce a bound on the order of the variation needed to prove reachability. Thus, for
these systems, the question of Agrachev [1999] on the finite determinability of reachability
is answered in the affirmative.

5.3. Summary. We have introduced in this section a new tool that should be useful for
studying the structure of the germ of an analytic system at a point x0. It remains, of
course, to put this tool to use to prove some interesting or useful control theoretic results.
Preliminary explorations show that our approach is useful for studying reachability. How-
ever, the big step of connecting the infinitesimal information provided by Theorem 5.2 to
the problem of controllability to x0 is something that is unexplored.
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